Multi-Modal Medical Image Fusion Based on FusionNet in YIQ Color Space

Entropy (Basel). 2020 Dec 17;22(12):1423. doi: 10.3390/e22121423.

Abstract

In order to obtain the physiological information and key features of source images to the maximum extent, improve the visual effect and clarity of the fused image, and reduce the computation, a multi-modal medical image fusion framework based on feature reuse is proposed. The framework consists of intuitive fuzzy processing (IFP), capture image details network (CIDN), fusion, and decoding. First, the membership function of the image is redefined to remove redundant features and obtain the image with complete features. Then, inspired by DenseNet, we proposed a new encoder to capture all the medical information features in the source image. In the fusion layer, we calculate the weight of each feature graph in the required fusion coefficient according to the trajectory of the feature graph. Finally, the filtered medical information is spliced and decoded to reproduce the required fusion image. In the encoding and image reconstruction networks, the mixed loss function of cross entropy and structural similarity is adopted to greatly reduce the information loss in image fusion. To assess performance, we conducted three sets of experiments on medical images of different grayscales and colors. Experimental results show that the proposed algorithm has advantages not only in detail and structure recognition but also in visual features and time complexity compared with other algorithms.

Keywords: SeLU activation function; YIQ color space; capture image details network; image entropy and cross entropy; intuitive fuzzy processing; trace of a feature map.