Concurrent Validity and Reliability of Three Ultra-Portable Vertical Jump Assessment Technologies

Sensors (Basel). 2020 Dec 17;20(24):7240. doi: 10.3390/s20247240.

Abstract

Vertical jump is a valuable training, testing, and readiness monitoring tool used across a multitude of sport settings. However, accurate field analysis has not always been readily available or affordable. For this study, two-dimensional motion capture (Mo-Cap), G-Flight micro-sensor, and PUSH accelerometer technologies were compared to a research-grade force-plate. Twelve healthy university students (7 males, 5 females) volunteered for this study. Each participant performed squat jumps, countermovement jumps, and drop jumps on three separate occasions. Between-device differences were determined using a one-way repeated measures ANOVA. Systematic bias was determined by limits of agreement using Bland-Altman analysis. Variability was examined via the coefficient of variation, interclass correlation coefficient, and typical error of measure. Dependent variables included jump height, contact-time, and reactive strength index (RSI). Mo-Cap held the greatest statistical similarity to force-plates, only overestimating contact-time (+12 ms). G-Flight (+1.3-4 cm) and PUSH (+4.1-4.5 cm) consistently overestimate jump height, while PUSH underestimates contact-time (-24 ms). Correspondingly, RSI was the most valid metric across all technologies. All technologies held small to moderate variably; however, variability was greatest with the G-Flight. While all technologies are practically implementable, practitioners may want to consider budget, athlete characteristics, exercise demands, set-up, and processing time before purchasing the most appropriate equipment.

Keywords: force-plate; motion-capture; reactive strength index; stiffness; variability.

MeSH terms

  • Athletes
  • Exercise
  • Exercise Test / standards*
  • Female
  • Humans
  • Male
  • Reproducibility of Results
  • Sports*