Comparison of PRISMA Data with Model Simulations, Hyperion Reflectance and Field Spectrometer Measurements on 'Piano delle Concazze' (Mt. Etna, Italy)

Sensors (Basel). 2020 Dec 17;20(24):7224. doi: 10.3390/s20247224.

Abstract

In this work, we compare first acquisitions from the ASI-PRISMA (Agenzia Spaziale Italiana-PRecursore IperSpettrale della Missione Applicativa) space mission with model simulations, past data acquired by the Hyperion sensor and field spectrometer measurements. The test site is 'Piano delle Concazze' (Mt. Etna, Italy), suitable for calibration purposes due to its homogeneity characteristics. The area measures at about 0.2 km2 and is composed of very homogeneous trachybasalt rich in plagioclase and olivine. Three PRISMA acquisitions, achieved on 31 July and 8 and 17 August 2019, are analyzed. Firstly, spectral profiles of PRISMA top of atmosphere (TOA) radiance are compared with MODerate resolution atmospheric TRANsmission (MODTRAN) simulations. The Pearson correlation coefficient is equal to 0.998 and 0.994 for VNIR (Visible and Near InfraRed) and SWIR (Short-Wave InfraRed) spectral ranges, respectively. PRISMA radiance overestimates values simulated by MODTRAN for all considered days, showing a mean bias of +5.22 and of +0.91 Wm-2sr-1µm-1 for VNIR and SWIR, respectively. The relative mean difference between reflectance values estimated by PRISMA and Hyperion, on the test area, is around +19%, despite the great difference in time acquisition (up to 19 years); PRISMA slightly overestimates Hyperion reflectance with an absolute mean difference of about +0.0083, within the variability of Hyperion acquisitions of ±0.0250 (corresponding to ±2 standard deviation). Finally, FieldSpec measurements also confirm the great quality of PRISMA reflectance estimations. The absolute mean difference results are around +0.0089 (corresponding to a relative error of about +21%). In the study, we investigate only the lower values of reflectance characterizing the test site. A more complete evaluation of PRISMA performances needs to consider other test sites with different optical characteristics.

Keywords: Mt. Etna; PRISMA mission; hyperspectral data.

Publication types

  • Letter