Influence of Glyphosate Formulations on the Behavior of Sulfentrazone in Soil in Mixed Applications

Toxics. 2020 Dec 17;8(4):123. doi: 10.3390/toxics8040123.

Abstract

The selection of weed biotypes that are resistant to glyphosate has increased the demand for its use mixed with other herbicides, such as sulfentrazone. However, when chemical molecules are mixed, interactions may occur, modifying the behavior of these molecules in the environment, such as the sorption and desorption in soil. In this study, we hypothesized that the presence of glyphosate-formulated products might increase the sorption or decrease the desorption of sulfentrazone, thereby increasing the risk of the contamination of water resources. Therefore, our work aimed to evaluate the sorption, desorption, and leaching of sulfentrazone in the soil in an isolated and mixed application with different glyphosate formulations. The sorption coefficients (Kfs) for the sulfentrazone, sulfentrazone + Roundup Ready, sulfentrazone + Roundup Ultra, and sulfentrazone + Zapp Qi foram were 1.3, 2.1, 2.3, and 1.9, respectively. The desorption coefficients (Kfd) for the sulfentrazone, sulfentrazone + Roundup Ready, sulfentrazone + Roundup Ultra, and sulfentrazone + Zapp Qi foram were 65.7, 125.2, 733.3 and 239.8, respectively. The experiments demonstrated that the sorption and desorption of sulfentrazone in combination with the other formulated glyphosate products are altered, supporting the hypothesis suggested by this work, i.e., that the presence of other molecules is a factor that affects the behavior of herbicides in the soil. This phenomenon altered the vertical mobility of sulfentrazone. Situations involving mixtures of pesticides should be evaluated in order to improve our understanding of the dynamics of these molecules and thus avoid environmental contamination.

Keywords: environmental impact; leaching; pesticide dynamics; soil contamination; sorption.