Silicea terra and Zincum metallicum Modulate the Activity of Macrophages Challenged with BCG In Vitro

Homeopathy. 2021 Feb;110(1):52-61. doi: 10.1055/s-0040-1716367. Epub 2020 Dec 21.

Abstract

Background: The homeopathic medicines Silicea terra (Sil) and Zincum metallicum (Zinc) modulate macrophage activity and were assessed in an experimental study in-vitro for their effects on macrophage-BCG (Bacillus Calmette-Guérin) interaction.

Methods: RAW 264.7 macrophages were infected with BCG, treated with different potencies of Sil and Zinc (6cH, 30cH and 200cH) or vehicle, and assessed 24 and 48 h later for bacilli internalization, hydrogen peroxide (H2O2) and cytokine production, and lysosomal activity.

Results: Treatment with vehicle was associated with non-specific inhibition of H2O2 production to the levels exhibited by uninfected macrophages. Sil 200cH induced significant reduction of H2O2 production (p < 0.001) compared with the vehicle and all other treatments, as well as higher lysosomal activity (p ≤ 0.001) and increased IL-10 production (p ≤ 0.05). Such effects were considered specific for this remedy and potency. The number of internalized bacilli was inversely proportional to Zinc potencies, with statistically significant interaction between dilution and treatment (p = 0.003). Such linear-like behavior was not observed for Sil dilutions: peak internalization occurred with the 30cH dilution, accompanied by cellular degeneration, and IL-6 and IL-10 increased (p ≤ 0.05) only in the cells treated with Sil 6cH.

Conclusion: Sil and Zinc presented different patterns of potency-dependent effect on macrophage activity. Bacterial digestion and a balanced IL-6/IL-10 production were related to Sil 6cH, though reduced oxidative stress with increased lysosomal activity was related to Sil 200cH. Degenerative effects were exclusively related to Sil 30cH, and potency-dependent phagocytosis was related only to Zinc.

MeSH terms

  • Bacillus / drug effects*
  • Brazil
  • Humans
  • Macrophages / drug effects*
  • Materia Medica / pharmacology*
  • Mycobacterium bovis / drug effects
  • Zinc / pharmacology*

Substances

  • Materia Medica
  • Zinc

Supplementary concepts

  • Bacillus camelliae