Microbially induced chromium isotope fractionation and trace elements behavior in lower Cambrian microbialites from the Jaíba Member, Bambuí Basin, Brazil

Geobiology. 2021 Mar;19(2):125-146. doi: 10.1111/gbi.12426. Epub 2020 Dec 21.

Abstract

In east-central Brazil, the Ediacaran-Cambrian Bambuí Basin has the potential to provide a record of unique geochemical responses of Earth's ocean and atmosphere evolution during this key time interval. From this perspective, we studied an interval of the upper Bambuí Basin using sedimentologic, stratigraphic, and chemostratigraphic tools. The lower Cambrian Jaíba Member of the uppermost Serra da Saudade Formation is an interval of up to 60 m-thick of carbonate rocks disposed into two shallowing upward trends. Inner to outer ramp and high-energy shoal deposits are described, in which laminated microbialites are the prevailing sedimentary facies. REE + Y data suggest contamination by iron (oxy)hydroxides that are dissociated from the riverine detritic flux. Sedimentary iron enrichment may be related to the settling of iron nanoparticles in coastal environments, diagenetic iron mobilization, or both. MREE enrichment is caused by microbial degradation of organic matter in the iron reduction zone during the anoxic early-diagenetic stage. Chromium isotopes yielded negatively fractionated values (δ53 Cr = -0.69 to -0.27‰), probably resulting from biotic and abiotic reduction of dissolved Cr(VI) to light and less toxic Cr(III) within pores of microbial mats. The δ53 Cr data of the Jaíba microbialite are thus a product of metabolic reactions in microbial mats and do not reflect seawater signal. The isotopic offset from seawater is feasible from molecular diffusion of Cr into pore water and reduction reactions occurring deep inside the mat, although the exact mechanism and consequences are not yet fully understood due to the poor preservation of metabolic reactions in the geological record. Our study suggests that Cr isotopes can be used to reconstruct Cr and other metals cycling within ancient microbial mats, and that caution should be taken when using past microbialites to infer seawater Cr records and redox state of the atmosphere and ocean.

Keywords: carbonate sedimentology; chemostratigraphy; metal reduction; microbial metabolism; rare earth elements.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brazil
  • Carbonates
  • Chromium Isotopes / analysis
  • Geologic Sediments
  • Seawater
  • Trace Elements*

Substances

  • Carbonates
  • Chromium Isotopes
  • Trace Elements