In-plane anisotropic 2D Ge-based binary materials for optoelectronic applications

Chem Commun (Camb). 2021 Jan 21;57(5):565-575. doi: 10.1039/d0cc04476h.

Abstract

In-plane anisotropic two-dimensional (2D) materials possess unique in-plane anisotropic physical properties arising from their low crystal lattice symmetry. Among these low-symmetry 2D materials, anisotropic Ge-based binary materials have the advantages of simple binary and earth-abundant compositions, good stability, highly anisotropic physical properties along two principle axes, and wide coverage of bandgaps, enabling use in broadband photodetection from the infrared to ultraviolet region. Here, we review recent progress in in-plane anisotropic 2D Ge-based binary materials, focusing on their anisotropic structural, electrical and optical properties. We then discuss demonstrations of optoelectronic applications related to those anisotropic properties including polarization-sensitive photodetection and polarization-based all-optical switches. Finally, we provide further possible opportunities for this relatively new, but quickly expanding family of materials.