Decoupling salt- and polymer-dependent dynamics in polyelectrolyte complex coacervates via salt addition

Soft Matter. 2021 Feb 15;17(5):1223-1231. doi: 10.1039/d0sm01412e.

Abstract

In polyelectrolyte complex coacervates, changes in salt concentration and changes in polymer concentration are typically strongly coupled, complicating interpretation of the salt- and polymer-concentration-dependent dynamics of these materials. To address this problem, we developed a "salt addition" method for preparation of complex coacervates that allows the salt concentration of a coacervate sample to be varied without changing its polymer concentration. This method was used to prepare coacervates of poly(styrene sulfonate) (PSS) with poly(diallyldimethylammonium chloride) (PDADMAC) with salt concentrations between 1.2 and 2 M and volume fractions of polymer between 0.1 and 0.25. Characterization of these samples by small-amplitude oscillatory shear rheology revealed that the relaxation times scale significantly more strongly with polymer volume fraction than has been previously assumed, highlighting the need to account for both salt and polymer-dependent contributions to the dynamics of these complex materials.