Biomimetic Boroxine-Based Multifunctional Thermosets via One-Pot Synthesis

ACS Appl Mater Interfaces. 2020 Dec 16;12(50):56445-56453. doi: 10.1021/acsami.0c16736. Epub 2020 Dec 2.

Abstract

Boroxine-based thermosets with remarkable mechanical tunability, self-healing ability, recyclability, and adhesive strength are of significant importance in various applications. However, complex multistep reactions are often required to prepare such thermosets. Herein, a facile one-pot approach to synthesize boroxine-based malleable thermosets is proposed. Random copolymers with pendant boronic acid groups were synthesized from alkenyl monomers containing boronic acids [4-vinylphenylboronic acid (4-VPBA), 3-vinylphenylboronic acid, or 3-acrylamidophenylboronic acid] and octadecanoxy polyethylene glycol methacrylate. Then, the as-prepared copolymers were cured to form thermosets with boroxine bonds. The tensile strengths of the thermosets were tailored to range from 9.3 to 27.5 MPa by increasing the concentration of 4-VPBA. Moreover, because of the reversible nature of dynamic boroxine bonds (transformation between boroxines and boronic acids) induced by water, the thermosets exhibit remarkable self-healing efficiency (up to 99%), tunable mechanical properties, and excellent recyclability. Additionally, the thermosets also demonstrate superior adhesive strength (as high as 73.9 MPa) on different substrates.

Keywords: adhesive; boroxine; one-pot; recyclability; self-healing; thermosets.