Mycobacterial and Plasmodium ovale-associated destruction of the jaw bones

Oral Dis. 2022 Mar;28(2):452-468. doi: 10.1111/odi.13756. Epub 2020 Dec 29.

Abstract

Objectives: The project aims were to identify infectious mechanisms responsible for an extreme form of mandibular osteonecrosis and osteomyelitis in West African populations and test the hypothesis that Mycobacterium tuberculosis plays a pivotal role.

Materials and methods: DNA was extracted from mandibular fragments of 9 of 19 patients previously included in a prospective study leading to the mycobacterial hypothesis. Amplified DNAs were used for preparing libraries suitable for next-generation sequencing. For comparison of the whole-genome sequencing data of the 9 patients with DNAs of both microbiota and human tissues, DIAMOND v0.9.26 was used to align sequencing reads to NCBI-nr database and MEGAN 6 for taxonomy binning and identification of Mycobacterium tuberculosis strains.

Results: The data show that mandibular bone fragments of all 9 patients not only contain Homo sapiens and Mycobacterium tuberculosis DNAs; they also contain DNAs of Plasmodium ovale wallikeri, Staphylococcus aureus, Staphylococcus hominis, and Prevotella P3-120/intermedia; as well as large numbers of DNAs from other infectious components.

Conclusions: The data obtained provide direct evidence to support the conclusion that combinations of Mycobacterium tuberculosis, Plasmodium ovale wallikeri, and other oral bacteria are involved in this particular type of mandibular destruction in West African individuals of many ages.

Keywords: M. tuberculosis; P. ovale wallikeri; mandibular necrosis.

MeSH terms

  • Humans
  • Malaria* / complications
  • Plasmodium ovale* / genetics
  • Prospective Studies