Observing the Fluctuation Dynamics of Dative Bonds Using Two-Dimensional Electronic Spectroscopy

J Phys Chem Lett. 2021 Jan 14;12(1):165-170. doi: 10.1021/acs.jpclett.0c03243. Epub 2020 Dec 15.

Abstract

We perform two-dimensional electronic spectroscopy on chlorophyll (Chl) a and b molecules in aprotic solvents of different Lewis basicity. By analyzing the ultrafast spectral diffusion dynamics of the Qy transition, we show that a certain timescale of the spectral diffusion dynamics is affected by the solvents' Lewis basicity. Control experiments with Chlorin-e6-a Chl molecule analog-and ab initio time-dependent density functional theory calculations confirm that we are directly probing the fluctuation dynamics of the dative bond between the solvent's lone pair and the Mg2+ center in Chls that is responsible for the Lewis basicity. The observation is indicative of dative bond length and angular fluctuations with timescales ranging between ∼30 and 150 ps and the dative bond-strength-dependent perturbation on the Qy transition frequency of Chls.