Photo-Crosslinked Silk Fibroin for 3D Printing

Polymers (Basel). 2020 Dec 9;12(12):2936. doi: 10.3390/polym12122936.

Abstract

Silk fibroin in material formats provides robust mechanical properties, and thus is a promising protein for 3D printing inks for a range of applications, including tissue engineering, bioelectronics, and bio-optics. Among the various crosslinking mechanisms, photo-crosslinking is particularly useful for 3D printing with silk fibroin inks due to the rapid kinetics, tunable crosslinking dynamics, light-assisted shape control, and the option to use visible light as a biocompatible processing condition. Multiple photo-crosslinking approaches have been applied to native or chemically modified silk fibroin, including photo-oxidation and free radical methacrylate polymerization. The molecular characteristics of silk fibroin, i.e., conformational polymorphism, provide a unique method for crosslinking and microfabrication via light. The molecular design features of silk fibroin inks and the exploitation of photo-crosslinking mechanisms suggest the exciting potential for meeting many biomedical needs in the future.

Keywords: additive manufacturing; free radicals; photo-initiators; proteins; silk; tyrosine.

Publication types

  • Review