A Rather Universal Vibrational Resonance in 1:1 Hydrates of Carbonyl Compounds

J Phys Chem Lett. 2021 Jan 14;12(1):138-144. doi: 10.1021/acs.jpclett.0c03197. Epub 2020 Dec 14.

Abstract

When the lower frequency OH stretching fundamental of a water molecule is shifted to the 3500 cm-1 spectral range by the solvation of a carbonyl compound, in this case a ketone, its infrared intensity is shared with a dark state. It is shown by chemical and isotope substitution for more than a dozen systems that the location of this resonance is remarkably substitution-independent. Harmonic and anharmonic model calculations support its assignment to a combination of the water bending overtone and in-plane water libration. This previously unrecognized intramolecular-intermolecular coupling in single solvent water has a strength of 7-10 cm-1. It may have been sporadically observed before in a few other carbonyl compounds such as amides, without any previous exploration of its potential universality. The resulting generic picosecond energy redistribution channel for aqueous solutions may represent a slow counterpart and doorway model of what happens on a subpicosecond time scale when the hydrogen bonds become stronger, such as in carboxylic acid dimers or protonated water clusters.