Comparison of histological and computed tomographic measurements of pig lung bronchi

ERJ Open Res. 2020 Dec 7;6(4):00500-2020. doi: 10.1183/23120541.00500-2020. eCollection 2020 Oct.

Abstract

Aim: Light microscopy is used as template in the evaluation and further development of medical imaging methods. Tissue shrinkage caused by histological processing is known to influence lung tissue dimensions. In diagnosis of COPD, computed tomography (CT) is widely used for automated airway measurement. The aim of this study was to compare histological and computed tomographic measurements of pig lung bronchi.

Methods: Airway measurements of pig lungs were performed after freezing under controlled inflation pressure in a liquid nitrogen bath. The wall thickness of seven bronchi was measured via Micro-CT and CT using the integral-based method (IBM) and the full-width-at-half-maximum method (FWHM) automatically and histologically on frozen and paraffin sections. Statistical analysis was performed using the Wilcoxon test, Pearson's correlation coefficient with a significance level at p<0.05, scatter plots and Bland-Altman plots.

Results: Bronchial wall thickness was smallest in frozen sections (median 0.71 mm) followed by paraffin sections (median 0.75 mm), Micro-CT (median 0.84 mm), and CT measurements using IBM (median 0.68 mm) and FWHM (median 1.69 mm). Statistically significant differences were found among all tested groups (p<0.05) except for CT IBM and paraffin and frozen sections and Micro-CT. There was high correlation between all parameters with statistical significance (p<0.05).

Conclusions: Significant differences in airway measurement were found among the different methods. The absolute measurements with CT IBM were closest to the histological results followed by Micro-CT, whereas CT FWHM demonstrated a distinct divergence from the other groups.