Allostery in the nitric oxide dioxygenase mechanism of flavohemoglobin

J Biol Chem. 2021 Jan-Jun:296:100186. doi: 10.1074/jbc.RA120.016637. Epub 2020 Dec 17.

Abstract

The substrates O2 and NO cooperatively activate the NO dioxygenase function of Escherichia coli flavohemoglobin. Steady-state and transient kinetic measurements support a structure-based mechanistic model in which O2 and NO movements and conserved amino acids at the E11, G8, E2, E7, B10, and F7 positions within the globin domain control activation. In the cooperative and allosteric mechanism, O2 migrates to the catalytic heme site via a long hydrophobic tunnel and displaces LeuE11 away from the ferric iron, which forces open a short tunnel to the catalytic site gated by the ValG8/IleE15 pair and LeuE11. NO permeates this tunnel and leverages upon the gating side chains triggering the CD loop to furl, which moves the E and F-helices and switches an electron transfer gate formed by LysF7, GlnE7, and water. This allows FADH2 to reduce the ferric iron, which forms the stable ferric-superoxide-TyrB10/GlnE7 complex. This complex reacts with internalized NO with a bimolecular rate constant of 1010 M-1 s-1 forming nitrate, which migrates to the CD loop and unfurls the spring-like structure. To restart the cycle, LeuE11 toggles back to the ferric iron. Actuating electron transfer with O2 and NO movements averts irreversible NO poisoning and reductive inactivation of the enzyme. Together, structure snapshots and kinetic constants provide glimpses of intermediate conformational states, time scales for motion, and associated energies.

Keywords: allostery; electron transfer; flavin; flavohemoglobin; heme; hemoglobin; myoglobin; nitric oxide; nitric oxide dioxygenase; oxygen.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allosteric Regulation
  • Dihydropteridine Reductase / chemistry
  • Dihydropteridine Reductase / metabolism*
  • Escherichia coli / chemistry
  • Escherichia coli / metabolism*
  • Escherichia coli Infections / microbiology
  • Escherichia coli Proteins / chemistry
  • Escherichia coli Proteins / metabolism*
  • Humans
  • Models, Molecular
  • NADH, NADPH Oxidoreductases / chemistry
  • NADH, NADPH Oxidoreductases / metabolism*
  • Nitric Oxide / metabolism
  • Oxygenases / chemistry
  • Oxygenases / metabolism*
  • Protein Conformation

Substances

  • Escherichia coli Proteins
  • Nitric Oxide
  • Oxygenases
  • nitric oxide dioxygenase
  • Dihydropteridine Reductase
  • hmp protein, E coli
  • NADH, NADPH Oxidoreductases