Simple template-based optimization for pediatric total lymphoid irradiation (TLI) radiotherapy treatments

Med Dosim. 2021;46(2):201-207. doi: 10.1016/j.meddos.2020.11.003. Epub 2020 Dec 11.

Abstract

Total lymphoid irradiation (TLI) is used in the management of pediatric allogeneic hematopoietic stem cell transplantation (HSCT. This work aims to simplify the treatment planning process for TLI via a proposed template using the volumetric modulated arc therapy (VMAT) technique. Fifteen pediatric patients were planned, prescribed to 8 Gy in 4 fractions. Cost functions included in the template were the ones for the planning target volume (PTV), and conformality cost function (CCF) for the rest of the patient's volume. Conformity index (CI), homogeneity index (HI), conformation number (CN), gradient index (GI), integral dose, and doses to the organs at risk achieved with the template were reported. Cost function influence over various indexes was studied by Wilcoxon signed ranks test. Same 15 patients were planned with 3-dimensional conventional radiotherapy (3D-CRT) technique for comparison. Mean CI and HI were 1.33 and 0.13, respectively, which indicates good dose conformation and homogeneity. Mean CN and GI values were 0.69 and 4.51, respectively. Mean PTV coverage was reached (V100% > 95%). No correlation between the CCF and indexes values was found (p > 0.05). Doses to organs at risk (OARs) were as low as possible without losing PTV coverage. VMAT plan showed higher levels of conformation and similar homogeneity as 3D-CRT plans. Doses to OARs were inferior with VMAT except for the right kidney. The proposed template simplifies the planning of TLI treatments, and it is able to create acceptable plans with little modification in order to reduce doses to certain organs like the kidneys or the heart. VMAT technique showed higher conformation and lower doses to OAR compared to 3D-CRT.

Keywords: Beam junction; Conformality; Pediatric; Total lymphoid irradiation; Treatment verification; VMAT.

MeSH terms

  • Child
  • Humans
  • Lymphatic Irradiation*
  • Organs at Risk
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • Radiotherapy, Intensity-Modulated*