Fe(II) interaction with cement phases: Method development, wet chemical studies and X-ray absorption spectroscopy

J Colloid Interface Sci. 2021 Apr 15:588:692-704. doi: 10.1016/j.jcis.2020.11.085. Epub 2020 Nov 25.

Abstract

Fe(II) interaction with cement phases was studied by means of co-precipitation and sorption experiments in combination with X-ray absorption fine structure (XAFS) spectroscopy. Oxidation of Fe(II) was fast in alkaline conditions and therefore, a methodology was developed which allowed Fe(II) to be stabilised in the sorption experiments and to prepare samples for spectroscopy. X-ray diffraction (XRD) of the co-precipitation samples showed uptake of a small portion of Fe(II) by calcium-silicate-hydrates (C-S-H) in the interlayer indicated by an increase in the interlayer spacing. Fe(II) incorporation by AFm phases was not indicated. Wet chemical experiments using 55Fe radiotracer revealed linear sorption of Fe(II) irrespective of the Ca/Si ratio of C-S-H and equilibrium pH. The Kd values for Fe(II) sorption on C-S-H are more than three orders of magnitude lower as compared to Fe(III), while they are comparable to those of other bivalent metal cations. XAFS spectroscopy showed Fe(II) binding by C-S-H in an octahedral coordination environment. The large number of neighbouring atoms rules out the formation of a single surface-bound Fe(II) species. Instead the data suggest presence of Fe(II) in a structurally bound entity. The data from XRD and XAFS spectroscopy suggests the presence of both surface- and interlayer-bound Fe(II) species.

Keywords: Calcium silicate hydrates; Ferrous iron; Sorption; X-ray absorption spectroscopy.