Neurofunctional plasticity in fraction learning: An fMRI training study

Trends Neurosci Educ. 2020 Dec:21:100141. doi: 10.1016/j.tine.2020.100141. Epub 2020 Sep 1.

Abstract

Background: Fractions are known to be difficult for children and adults. Behavioral studies suggest that magnitude processing of fractions can be improved via number line estimation (NLE) trainings, but little is known about the neural correlates of fraction learning.

Method: To examine the neuro-cognitive foundations of fraction learning, behavioral performance and neural correlates were measured before and after a five-day NLE training.

Results: In all evaluation tasks behavioral performance increased after training. We observed a fronto-parietal network associated with number magnitude processing to be recruited in all tasks as indicated by a numerical distance effect. For symbolic fractions, the distance effect on intraparietal activation was only observed after training.

Conclusion: The absence of a distance effect of symbolic fractions before the training could indicate an initially less automatic access to their overall magnitude. NLE training facilitates processing of overall fraction magnitude as indicated by the distance effect in neural activation.

Keywords: Flow experience; Fraction processing; Number line estimation training; Numerical distance effect; fMRI.

MeSH terms

  • Adult
  • Child
  • Humans
  • Learning*
  • Magnetic Resonance Imaging*
  • Task Performance and Analysis