Substituting the Thiol Ester of Human A2M or C3 with a Disulfide Produces Native Proteins with Altered Proteolysis-Induced Conformational Changes

Biochemistry. 2020 Dec 29;59(51):4799-4809. doi: 10.1021/acs.biochem.0c00803. Epub 2020 Dec 10.

Abstract

Most proteins in the α-macroglobulin (αM) superfamily contain reactive thiol esters that are required for their biological function. Here, we have characterized the human α2-macroglobulin (A2M) and complement component C3 mutants A2M Q975C and C3 Q1013C, which replace the CGEQ thiol ester motifs of the original proteins with the disulfide-forming sequence CGEC. Mass spectrometry showed that the intended disulfide was formed in both proteins. The correct folding and native conformation of A2M Q975C were shown by its assembly to a tetramer, an initially slow electrophoretic mobility with a demonstrable conformational collapse induced by proteolysis, functional protease trapping, and conformation-dependent interactions with low-density lipoprotein receptor-related protein 1. However, A2M Q975C had a decreased capacity to inhibit trypsin and was more susceptible to cleavage by trypsin or thermolysin when compared to wild-type A2M. C3 Q1013C also folded correctly and was initially in a native conformation, as demonstrated by its cation exchange elution profile, electrophoretic mobility, and interaction with complement factor B, although it assumed a conformation that was distinct from native C3, C3b, or C3(H2O) when cleaved by trypsin. These results demonstrate that disulfides can substitute thiol esters and maintain the native conformations of A2M and C3. Additionally, they indicate that proteolysis is not the sole factor in the conformational changes of A2M and C3 and that thiol ester lysis also plays a role.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Complement C3 / chemistry*
  • Complement C3 / genetics
  • Cysteine / chemistry
  • Cysteine / genetics
  • Disulfides / chemistry*
  • HEK293 Cells
  • Humans
  • Mutation
  • Protein Conformation
  • Proteolysis
  • Trypsin / chemistry
  • alpha-Macroglobulins / chemistry*
  • alpha-Macroglobulins / genetics

Substances

  • A2M protein, human
  • C3 protein, human
  • Complement C3
  • Disulfides
  • alpha-Macroglobulins
  • Trypsin
  • Cysteine