Plasmid Vectors for in Vivo Selection-Free Use with the Probiotic E. coli Nissle 1917

ACS Synth Biol. 2021 Jan 15;10(1):94-106. doi: 10.1021/acssynbio.0c00466. Epub 2020 Dec 10.

Abstract

Escherichia coli Nissle 1917 (EcN) is a probiotic bacterium, commonly employed to treat certain gastrointestinal disorders. It is fast emerging as an important target for the development of therapeutic engineered bacteria, benefiting from the wealth of knowledge of E. coli biology and ease of manipulation. Bacterial synthetic biology projects commonly utilize engineered plasmid vectors, which are simple to engineer and can reliably achieve high levels of protein expression. However, plasmids typically require antibiotics for maintenance, and the administration of an antibiotic is often incompatible with in vivo experimentation or treatment. EcN natively contains plasmids pMUT1 and pMUT2, which have no known function but are stable within the bacteria. Here, we describe the development of the pMUT plasmids into a robust platform for engineering EcN for in vivo experimentation, alongside a CRISPR-Cas9 system to remove the native plasmids. We systematically engineered both pMUT plasmids to contain selection markers, fluorescent markers, temperature sensitive expression, and curli secretion systems to export a customizable functional material into the extracellular space. We then demonstrate that the engineered plasmids were maintained in bacteria as the engineered bacteria pass through the mouse GI tract without selection, and that the secretion system remains functional, exporting functionalized curli proteins into the gut. Our plasmid system presents a platform for the rapid development of therapeutic EcN bacteria.

Keywords: microbiome; probiotic engineering; synthetic biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • CRISPR-Cas Systems / genetics
  • Escherichia coli / genetics*
  • Gastrointestinal Tract / metabolism
  • Gene Editing
  • Gene Expression
  • Genetic Engineering / methods
  • Mice
  • Mice, Inbred C57BL
  • Plasmids / genetics
  • Plasmids / metabolism*
  • Promoter Regions, Genetic
  • Temperature

Substances

  • Bacterial Proteins
  • Crl protein, Bacteria