[Response of photosynthesis and carbon/nitrogen metabolism to drought stress in Chinese chestnut 'Yanshanzaofeng' seedlings]

Ying Yong Sheng Tai Xue Bao. 2020 Nov;31(11):3674-3680. doi: 10.13287/j.1001-9332.202011.027.
[Article in Chinese]

Abstract

Drought is a main factor affecting the growth and yield of Chinese chestnut trees in Yan-shan Mountains. To investigate the responses of chestnut seedlings to drought stress, the growth and physiological indices, including photosynthetic characteristics, biomass, proline, malondialdehyde, carbon and nitrogen contents were measured in roots, stems, and leaves after the Chinese chestnut 'Yanshanzaofeng' seedlings in the pots were treated by simulating drought for 22 days. The results showed that, compared with the normal irrigation, water contents in the roots, stems and leaves were decreased by 18.3%, 29.0% and 62.8%, respectively, accompanied by the considerable increases in the contents of proline (355.0%-1586.7%) and malondialdehyde except in the stems (41.1%-81.3%). The non-photochemical quenching coefficiency and net photosynthetic rate in the leaves were significantly decreased by 49.4% and 77.4%, respectively. The contents of non-structural carbohydrates were increased by 21.4% in stems and 69.5% in leaves, but that in roots did not change. The contents of nitrate were increased by 28.9% in stems and 26.8% in leaves, but that in roots did not change. Ammonium nitrogen was increased by 16.2%, 12.9% and 217.6% in roots, stems, and leaves, but being statistically significant in the leaves. These results indicated that drought stress led to serious damage to 'Yanshanzaofeng' chestnut seedlings, which inhibited photosynthetic performance, but they could improve their adaptation to drought stress by enhancing carbon and nitrogen metabolism. Our results provide a reference for the breeding and cultivation of drought resistance of the local Chinese chestnut resources.

干旱是影响燕山地区板栗树生长和产量的主要因子。为了在整株水平上研究板栗幼苗对干旱胁迫的响应,本试验以盆栽“燕山早丰”板栗幼苗为研究对象,通过模拟自然干旱处理22 d,测定叶片光合特性,根、茎、叶生物量、脯氨酸、丙二醛、碳、氮等生理指标变化。结果表明: 与正常浇水相比,干旱胁迫下幼苗根、茎、叶含水量分别显著下降18.3%、29.0%和62.8%,脯氨酸(355.0%~1586.7%)和丙二醛(41.1%~81.3%)含量显著上升(茎中丙二醛除外),但叶部非光化学淬灭系数和净光合速率分别显著下降49.4%和77.4%;同时,茎和叶中非结构碳水化合物含量分别显著增加21.4%和69.5%,根中增加幅度未达显著差异水平;根和叶中硝态氮含量分别显著增加28.9%和26.8%,茎中增加幅度未达显著差异水平;根、茎、叶中铵态氮含量分别增加了16.2%、12.9%、217.6%,但仅在叶部差异显著。综上,干旱胁迫对燕山早丰板栗幼苗产生了较严重的伤害,显著抑制了其光合性能,但能够通过增强体内碳氮代谢来提高其适应干旱环境的能力。本研究结果可为当地板栗抗旱性资源选育和栽培提供参考。.

Keywords: Castanea mollissima; Yanshanzaofeng; carbon and nitrogen metabolism; drought stress; physiological response.

MeSH terms

  • Asian People
  • Carbon
  • Droughts*
  • Humans
  • Nitrogen
  • Photosynthesis
  • Seedlings*

Substances

  • Carbon
  • Nitrogen