The 3D-Printed PLGA Scaffolds Loaded with Bone Marrow-Derived Mesenchymal Stem Cells Augment the Healing of Rotator Cuff Repair in the Rabbits

Cell Transplant. 2020 Jan-Dec:29:963689720973647. doi: 10.1177/0963689720973647.

Abstract

The healing of tendon-bone in the rotator cuff is featured by the formation of the scar tissues in the interface after repair. This study aimed to determine if the 3D-printed poly lactic-co-glycolic acid (PLGA) scaffolds loaded with bone marrow-derived mesenchymal stem cells (BMSCs) could augment the rotator cuff repair in the rabbits. PLGA scaffolds were generated by the 3D-printed technology; Cell Counting Kit-8 assay evaluated the proliferation of BMSCs; the mRNA and protein expression levels were assessed by quantitative real-time polymerase chain reaction and western blot, respectively; immunohistology evaluated the rotator cuff repair; biomechanical characteristics of the repaired tissues were also assessed. 3D-printed PLGA scaffolds showed good biocompatibility without affecting the proliferative ability of BMSCs. BMSCs-PLGA scaffolds implantation enhanced the cell infiltration into the tendon-bone injunction at 4 weeks after implantation and improved the histology score in the tendon tissues after implantation. The mRNA expression levels of collagen I, III, tenascin, and biglycan were significantly higher in the scaffolds + BMSCs group at 4 weeks post-implantation than that in the scaffolds group. At 8 and 12 weeks after implantation, the biglycan mRNA expression level in the BMSCs-PLGA scaffolds group was significantly lower than that in the scaffolds group. BMSCs-PLGA scaffolds implantation enhanced collagen formation and increased collagen dimeter in the tendon-bone interface. The biomechanical analysis showed that BMSCs-PLGA scaffolds implantation improved the biomechanical properties of the regenerated tendon. The combination of 3D-printed PLGA scaffolds with BMSCs can augment the tendon-bone healing in the rabbit rotator cuff repair model.

Keywords: 3D-printed PLGA scaffolds; BMSCs; collagen; rotator cuff repair; tendon–bone.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bone Marrow Cells / cytology*
  • Bone Marrow Cells / physiology
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / physiology
  • Polylactic Acid-Polyglycolic Acid Copolymer / chemistry*
  • Rabbits
  • Rotator Cuff Injuries / therapy*
  • Tissue Scaffolds / chemistry*
  • Wound Healing / physiology*

Substances

  • Polylactic Acid-Polyglycolic Acid Copolymer