Carrier rate of the c.235G>C mutation in the bovine isoleucyl-tRNA synthetase (IARS) gene of Japanese Black cows at Kagoshima prefecture, Japan, and analysis of the metabolic profiling and reproductive performance of heterozygous cows

J Vet Med Sci. 2021 Mar 5;83(2):254-259. doi: 10.1292/jvms.20-0356. Epub 2020 Dec 8.

Abstract

Bovine isoleucyl-tRNA synthetase (IARS) disorder, a major cause of weak calf syndrome, is caused by a homozygous missense (c.235G>C) mutation in the bovine IARS gene of Japanese Black (JB) cattle, which was identified in 2013. However, the extent to which the carrier rate has changed at Kagoshima prefecture, Japan, and whether the carrier status is associated with any clinical or reproductive problems, have yet to be ascertained. In this study, using a real-time polymerase chain reaction-based genotyping assay, we determined the carrier rate in a regional JB cow population at Kagoshima prefecture. Comparative analyses were performed on the metabolic profile test (MPT) results and reproductive performance data obtained for heterozygous carrier and homozygous wild-type cows. In 2009 and 2018, DNA samples were collected from 130 and 462 clinically healthy JB cows, respectively, in Kagoshima prefecture. MPT results and reproductive performance data were evaluated for 62 cows, comprising four heterozygous carriers and 58 wild-type cows. Genotyping revealed that the carrier rate was 6.9% in 2009 and 1.5% in 2018, the difference of which was statistically significant (P<0.005). There were no statistically significant differences between the carrier and wild-type cows with respect to either MPT results or reproductive performance, indicating that the carrier cows have necessary IARS activity to maintain minimal health and reproductive potential.

Keywords: Japanese Black cow; carrier rate; isoleucyl-tRNA synthetase (IARS) gene; metabolic profile test; reproductive performance.

MeSH terms

  • Animals
  • Cattle
  • Cattle Diseases* / genetics
  • Female
  • Heterozygote
  • Humans
  • Isoleucine-tRNA Ligase / genetics*
  • Japan
  • Mutation
  • Reproduction / genetics

Substances

  • Isoleucine-tRNA Ligase