High-throughput approach for the in situ generation of magnetic ionic liquids in parallel-dispersive droplet extraction of organic micropollutants in aqueous environmental samples

Talanta. 2021 Feb 1;223(Pt 2):121759. doi: 10.1016/j.talanta.2020.121759. Epub 2020 Oct 15.

Abstract

In this work, a novel and high-throughput parallel-dispersive droplet extraction (Pa-DDE) based on in situ formation of the hydrophobic MILs ([Co(C4IM)4+2]2[NTf2-], [Ni(C4IM)4+2]2[NTf2-] and [Ni(BeIM)4+2]2[NTf2-]) is demonstrated, for the first time, for the determination of benzophenone, metolachlor, triclocarban, pendimethalin, 4-methylbenzylidene camphor, and 2-ethylhexyl-4-methoxycinnamate from aqueous environmental samples. This experimental setup is comprised of a 96-well plate system containing a set of magnetic pins which were used to collect the MIL droplet after in situ formation. This consolidated system enabled simultaneous extraction of up to 96 samples and MIL production in one step. Using this apparatus, sample preparation times of 0.78 min per sample was achieved. The experimental conditions were carefully optimized using uni and multivariate approaches. The optimal conditions were comprised of sample volume of 1.25 mL, 4 mg of [Co(C4IM)4+2]2[Cl-] and 40 μL of LiNTf2 for the in situ formation, and dilution in 20 μL of acetonitrile. The analytical parameters of merit were successfully determined with LODs ranging from 7.5 to 25 μg L-1 and coefficients of determination higher than 0.989. Intraday and interday precision ranged from 6.4 to 20.6% (n = 3) and 11.6-22.9% (n = 9), respectively, with analyte relative recovery ranging between 53.9 and 129.1%.

Keywords: 96-Well plate; In situ formation; Magnetic ionic liquids; Parallel dispersive droplet extraction; Sample preparation.