Photoelectric Sensor for Fast and Low-Priced Determination of Bi- and Triphasic Segmented Slug Flow Parameters

Sensors (Basel). 2020 Dec 4;20(23):6948. doi: 10.3390/s20236948.

Abstract

Applying multiphase systems in microreactors leads to an intensification of heat and mass transport. Critical aspects of the well-studied segmented slug-flow, such as bubble generation and pump control, can be automated, provided a robust sensor for the reliable determination of velocity, phase lengths, and phase ratio(s) is available. In this work, a fast and low-priced sensor is presented, based on two optical transmission sensors detecting flow characteristics noninvasively together with a microcontroller. The resulting signal is mainly due to refraction of the bubble-specific geometries as shown by a simulation of light paths. The high performance of the processing procedure, utilizing the derivative of the signal, is demonstrated for a bi- and triphasic slug flow. The error of <5% is entirely reasonable for the purpose envisaged. The sensor presented is very fast, robust, and inexpensive, thus enhancing the attractiveness of parallelized capillary reactors for industrial applications.

Keywords: capillary reactor; multiphase systems; online velocity measurement; optoelectric sensor; segmented slug flow.