Enzyme Degradable Polymersomes from Chitosan-g-[poly-l-lysine-block-ε-caprolactone] Copolymer

Macromol Biosci. 2020 Dec 2:e2000259. doi: 10.1002/mabi.202000259. Online ahead of print.

Abstract

The scope of this study includes the synthesis of chitosan-g-[peptide-poly-ε-caprolactone] and its self-assembly into polymeric vesicles employing the solvent shift method. In this way, well-defined core-shell structures suitable for encapsulation of drugs are generated. The hydrophobic polycaprolactone side-chain and the hydrophilic chitosan backbone are linked via an enzyme-cleavable peptide. The synthetic route involves the functionalization of chitosan with maleimide groups and the preparation of polycaprolactone with alkyne end-groups. A peptide functionalized with a thiol group on one side and an azide group on the other side is prepared. Thiol-ene click-chemistry and azide-alkyne Huisgen cycloaddition are then used to link the chitosan and poly-ε-caprolactone chains, respectively, with this peptide. For a preliminary study, poly-l-lysin is a readily available and cleavable peptide that is introduced to investigate the feasibility of the system. The size and shape of the polymersomes are studied by dynamic light scattering and cryo-scanning electron microscopy. Furthermore, degradability is studied by incubating the polymersomes with two enzymes, trypsin and chitosanase. A dispersion of polymersomes is used to coat titanium plates and to further test the stability against enzymatic degradation.

Keywords: chitosan; click chemistry; drug delivery system; enzyme; polymersomes; poly‐ε‐caprolactone.