BAM1/2 receptor kinase signaling drives CLE peptide-mediated formative cell divisions in Arabidopsis roots

Proc Natl Acad Sci U S A. 2020 Dec 22;117(51):32750-32756. doi: 10.1073/pnas.2018565117. Epub 2020 Dec 7.

Abstract

Cell division is often regulated by extracellular signaling networks to ensure correct patterning during development. In Arabidopsis, the SHORT-ROOT (SHR)/SCARECROW (SCR) transcription factor dimer activates CYCLIND6;1 (CYCD6;1) to drive formative divisions during root ground tissue development. Here, we show plasma-membrane-localized BARELY ANY MERISTEM1/2 (BAM1/2) family receptor kinases are required for SHR-dependent formative divisions and CYCD6;1 expression, but not SHR-dependent ground tissue specification. Root-enriched CLE ligands bind the BAM1 extracellular domain and are necessary and sufficient to activate SHR-mediated divisions and CYCD6;1 expression. Correspondingly, BAM-CLE signaling contributes to the restriction of formative divisions to the distal root region. Additionally, genetic analysis reveals that BAM-CLE and SHR converge to regulate additional cell divisions outside of the ground tissues. Our work identifies an extracellular signaling pathway regulating formative root divisions and provides a framework to explore this pathway in patterning and evolution.

Keywords: Arabidopsis; CLE peptide; SHORT-ROOT; cell cycle; receptor kinase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arabidopsis / cytology*
  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Cell Division
  • Gene Expression Regulation, Plant
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Plant Cells / metabolism
  • Plant Roots / cytology*
  • Plant Roots / genetics
  • Plant Roots / metabolism
  • Plants, Genetically Modified
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Signal Transduction
  • Transcription Factors / genetics
  • Transcription Factors / metabolism

Substances

  • Arabidopsis Proteins
  • SHORT ROOT protein, Arabidopsis
  • Transcription Factors
  • Green Fluorescent Proteins
  • BAM1 protein, Arabidopsis
  • BAM2 protein, Arabidopsis
  • Protein Serine-Threonine Kinases