Detecting Earthquake-Related Anomalies of a Borehole Strain Network Based on Multi-Channel Singular Spectrum Analysis

Entropy (Basel). 2020 Sep 27;22(10):1086. doi: 10.3390/e22101086.

Abstract

To investigate the nonlinear spatio-temporal behavior of earthquakes, a complex network has been built using borehole strain data from the southwestern endpoint of the Longmenshan fault zone, Sichuan-Yunnan region of China, and the topological structural properties of the network have been investigated based on data from 2011-2014. Herein, six observation sites were defined as nodes and their edges as the connections between them. We introduced Multi-channel Singular Spectrum Analysis (MSSA) to analyze periodic oscillations, earthquake-related strain, and noise in multi-site observations, and then defined the edges of the network by calculating the correlations between sites. The results of the daily degree centrality of the borehole strain network indicated that the strain network anomalies were correlatable with local seismicity associate with the earthquake energy in the strain network. Further investigation showed that strain network anomalies were more likely to appear before major earthquakes rather than after them, particularly within 30 days before an event. Anomaly acceleration rates were also found to be related to earthquake energy. This study has revealed the self-organizing pre-earthquake phenomena and verified the construction of borehole networks is a powerful tool for providing information on earthquake precursors and the dynamics of complex fault systems.

Keywords: Multi-channel Singular Spectrum Analysis; borehole strain network; network anomalies; self-organizing pre-earthquake phenomena.