Four-Types of IIT-Induced Group Integrity of Plecoglossus altivelis

Entropy (Basel). 2020 Jun 30;22(7):726. doi: 10.3390/e22070726.

Abstract

Integrated information theory (IIT) was initially proposed to describe human consciousness in terms of intrinsic-causal brain network structures. Particularly, IIT 3.0 targets the system's cause-effect structure from spatio-temporal grain and reveals the system's irreducibility. In a previous study, we tried to apply IIT 3.0 to an actual collective behaviour in Plecoglossus altivelis. We found that IIT 3.0 exhibits qualitative discontinuity between three and four schools of fish in terms of Φ value distributions. Other measures did not show similar characteristics. In this study, we followed up on our previous findings and introduced two new factors. First, we defined the global parameter settings to determine a different kind of group integrity. Second, we set several timescales (from Δ t = 5 / 120 to Δ t = 120 / 120 s). The results showed that we succeeded in classifying fish schools according to their group sizes and the degree of group integrity around the reaction time scale of the fish, despite the small group sizes. Compared with the short time scale, the interaction heterogeneity observed in the long time scale seems to diminish. Finally, we discuss one of the longstanding paradoxes in collective behaviour, known as the heap paradox, for which two tentative answers could be provided through our IIT 3.0 analysis.

Keywords: cause and effect structure; collective behaviour; integrated information theory; self-organization.