Overcoming interferon (IFN)-γ resistance ameliorates transforming growth factor (TGF)-β-mediated lung fibroblast-to-myofibroblast transition and bleomycin-induced pulmonary fibrosis

Biochem Pharmacol. 2021 Jan:183:114356. doi: 10.1016/j.bcp.2020.114356. Epub 2020 Dec 4.

Abstract

Abnormal activation of transforming growth factor (TGF)-β is a common cause of fibroblast activation and fibrosis. In bleomycin (BLM)-induced lung fibrosis, the marked expression of phospho-Src homology-2 domain-containing phosphatase (SHP) 2, phospho-signal transducer and activator of transcription (STAT) 3, and suppressor of cytokine signaling (SOCS) 3 was highly associated with pulmonary parenchymal lesions and collagen deposition. Human pulmonary fibroblasts differentiated into myofibroblasts exhibited activation of SHP2, SOCS3, protein inhibitor of activated STAT1, STAT3, interleukin (IL)-6, and IL-10. The significant retardation of interferon (IFN)-γ signaling in myofibroblasts was revealed by the decreased expression of phospho-STAT1, IFN-γ-associated genes, and IFN-γ-inducible protein (IP) 10. Microarray analysis showed an induction of fibrotic genes in TGF-β1-differentiated myofibroblasts, whereas IFN-γ-regulated anti-fibrotic genes were suppressed. Interestingly, BIBF 1120 treatment effectively inhibited both STAT3 and SHP2 phosphorylation in TGF-β1-differentiated myofibroblasts and BLM fibrotic lung tissues, which was accompanied by suppression of fibroblast-myofibroblast transition. Moreover, the combined treatment of BIBF 1120 plus IFN-γ or SHP2 inhibitor PHPS1 plus IFN-γ markedly reduced TGF-β1-induced α-smooth muscle actin and further ameliorated BLM lung fibrosis. Accordingly, myofibroblasts were hyporesponsiveness to IFN-γ, while blockade of SHP2 contributed to the anti-fibrotic efficacy of IFN-γ.

Keywords: Fibrosis; IFN-γ; Myofibroblasts; SHP2; TGF-β.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antibiotics, Antineoplastic / toxicity
  • Bleomycin / toxicity*
  • Fibroblasts / drug effects
  • Fibroblasts / metabolism*
  • Fibroblasts / pathology
  • Humans
  • Interferon-gamma / antagonists & inhibitors
  • Interferon-gamma / metabolism*
  • Lung / drug effects
  • Lung / metabolism
  • Lung / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Myofibroblasts / drug effects
  • Myofibroblasts / metabolism*
  • Myofibroblasts / pathology
  • Pulmonary Fibrosis / chemically induced
  • Pulmonary Fibrosis / metabolism*
  • Pulmonary Fibrosis / pathology
  • Rats
  • Rats, Sprague-Dawley
  • Transforming Growth Factor beta / metabolism*
  • Transforming Growth Factor beta / toxicity

Substances

  • Antibiotics, Antineoplastic
  • Transforming Growth Factor beta
  • Bleomycin
  • Interferon-gamma