A role for Cep70 in centriole amplification in multiciliated cells

Dev Biol. 2021 Mar:471:10-17. doi: 10.1016/j.ydbio.2020.11.011. Epub 2020 Dec 4.

Abstract

Centriole amplification in multiciliated cells occurs in a pseudo-cell cycle regulated process that typically utilizes a poorly characterized molecularly dense structure called the deuterosome. We identified the centrosomal protein Cep70 as a novel deuterosome-associated protein that forms a complex with other deuterosome proteins, CCDC78 and Deup1. Cep70 dynamically associates with deuterosomes during centriole amplification in the ciliated epithelia of Xenopus embryos. Cep70 is not found in nascent deuterosomes prior to amplification. However, it becomes localized at deuterosomes at the onset of centriole biogenesis and remains there after the completion of centriole amplification. Deuterosome localization requires a conserved C-terminal "Cep70" motif. Depletion of Cep70 using morpholino oligos or CRISPR/Cas9 editing in F0 embryos leads to a severe decrease in centriole formation in both endogenous MCCs, as well as ectopically induced MCCs. Consistent with a decrease in centrioles, endogenous MCCs have defects in the process of radial intercalation. We propose that Cep70 represents a novel regulator of centriole biogenesis in MCCs.

Keywords: Centriole amplification; Cep70; Deuterosome; Multiciliated cell; Radial intercalation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Centrioles / genetics
  • Centrioles / metabolism*
  • Cilia / genetics
  • Cilia / metabolism*
  • Epithelial Cells / cytology
  • Epithelial Cells / metabolism*
  • Microtubule-Associated Proteins / genetics
  • Microtubule-Associated Proteins / metabolism*
  • Xenopus Proteins / genetics
  • Xenopus Proteins / metabolism*
  • Xenopus laevis

Substances

  • Microtubule-Associated Proteins
  • Xenopus Proteins