Cooperative Game Approach to Robust Control Design for Fuzzy Dynamical Systems

IEEE Trans Cybern. 2022 Jul;52(7):7151-7163. doi: 10.1109/TCYB.2020.3035414. Epub 2022 Jul 4.

Abstract

There is uncertainty in the system, and we consider that uncertainty is (possibly fast) time varying, but with definite bound. Fuzzy set theory is used to describe the inexact boundary and then the problem of robust control of uncertain dynamical systems is studied. Based on two adjustable design parameters, a robust control method for general mechanical systems is proposed. The control is deterministic, not the conventional IF-THEN rule based. By using the Lyapunov minimax approach, it is proved that the proposed control can guarantee system performance to be uniformly bounded and uniformly ultimately bounded. In order to find the optimal solution in the prescribed range, a two-player cooperative game is used. To reduce costs while ensuring control performance, two performance indices are developed, each of which is controlled by an adjustable parameter (i.e., player). Both necessary and sufficient conditions for Pareto-optimality are established. Using these conditions, the Pareto-optimal solution can be obtained. The effectiveness of the control design is demonstrated by the simulation of the two-body pendulum.