BOIN12: Bayesian Optimal Interval Phase I/II Trial Design for Utility-Based Dose Finding in Immunotherapy and Targeted Therapies

JCO Precis Oncol. 2020 Nov 16:4:PO.20.00257. doi: 10.1200/PO.20.00257. eCollection 2020.

Abstract

Purpose: For immunotherapy, such as checkpoint inhibitors and chimeric antigen receptor T-cell therapy, where the efficacy does not necessarily increase with the dose, the maximum tolerated dose may not be the optimal dose for treating patients. For these novel therapies, the objective of dose-finding trials is to identify the optimal biologic dose (OBD) that optimizes patients' risk-benefit trade-off.

Methods: We propose a simple and flexible Bayesian optimal interval phase I/II (BOIN12) trial design to find the OBD that optimizes the risk-benefit trade-off. The BOIN12 design makes the decision of dose escalation and de-escalation by simultaneously taking account of efficacy and toxicity and adaptively allocates patients to the dose that optimizes the toxicity-efficacy trade-off. We performed simulation studies to evaluate the performance of the BOIN12 design.

Results: Compared with existing phase I/II dose-finding designs, the BOIN12 design is simpler to implement, has higher accuracy to identify the OBD, and allocates more patients to the OBD. One of the most appealing features of the BOIN12 design is that its adaptation rule can be pretabulated and included in the protocol. During the trial conduct, clinicians can simply look up the decision table to allocate patients to a dose without complicated computation.

Conclusion: The BOIN12 design is simple to implement and yields desirable operating characteristics. It overcomes the computational and implementation complexity that plagues existing Bayesian phase I/II dose-finding designs and provides a useful design to optimize the dose of immunotherapy and targeted therapy. User-friendly software is freely available to facilitate the application of the BOIN12 design.