Axial resolution improvement of two-photon microscopy by multi-frame reconstruction and adaptive optics

Biomed Opt Express. 2020 Oct 22;11(11):6634-6648. doi: 10.1364/BOE.409651. eCollection 2020 Nov 1.

Abstract

Two-photon microscopy (TPM) has been widely used in biological imaging owing to its intrinsic optical sectioning and deep penetration abilities. However, the conventional TPM suffers from poor axial resolution, which makes it difficult to recognize some three-dimensional fine features. We present multi-frame reconstruction two-photon microscopy (MR-TPM) using a liquid lens as a fast axial scanning engine. A sensorless adaptive optics (AO) approach is adopted to correct the aberrations caused by both the liquid lens and the optical system. By overcoming the effect of optical aberrations, inadequate sampling, and poor focusing capability of a conventional TPM, the axial resolution can be improved by a factor of 3 with a high signal-to-noise ratio. The proposed technology is compatible with the conventional TPM and requires no optical post-processing. We demonstrate the proposed method by imaging fluorescent beads, in vitro imaging of the neural circuit of mouse brain slice, and in vivo time-lapse imaging of the morphological changes of microglial cells in septic mice model. The results suggest that the axon of the neural circuit and the process of microglia along the axial direction, which cannot be resolved using conventional TPM, become distinguishable using the proposed AO MR-TPM.