Fluctuations of driving pressure during mechanical ventilation indicates elevated central venous pressure and poor outcomes

Pulm Circ. 2020 Nov 25;10(4):2045894020970363. doi: 10.1177/2045894020970363. eCollection 2020 Oct-Dec.

Abstract

Inappropriate mechanical ventilation may induce hemodynamic alterations through cardiopulmonary interactions. The aim of this study was to explore the relationship between airway pressure and central venous pressure during the first 72 h of mechanical ventilation and its relevance to patient outcomes. We conducted a retrospective study of the Department of Critical Care Medicine of Peking Union Medical College Hospital and a secondary analysis of the MIMIC-III clinical database. The relationship between the ranges of driving pressure and central venous pressure during the first 72 h and their associations with prognosis were investigated. Data from 2790 patients were analyzed. Wide range of driving airway pressure (odds ratio, 1.0681; 95% CI, 1.0415-1.0953; p < 0.0001) were independently associated with mortality, ventilator-free time, intensive care unit and hospital length of stay. Furthermore, wide range of driving pressure and elevated central venous pressure exhibited a close correlation. The area under receiver operating characteristic demonstrated that range of driving pressure and central venous pressure were measured at 0.689 (95% CI, 0.670-0.707) and 0.681 (95% CI, 0.662-0.699), respectively. Patients with high ranges of driving pressure and elevated central venous pressure had worse outcomes. Post hoc tests showed significant differences in 28-day survival rates (log-rank (Mantel-Cox), 184.7; p < 0.001). In conclusion, during the first 72 h of mechanical ventilation, patients with hypoxia with fluctuating driving airway pressure have elevated central venous pressure and worse outcomes.

Keywords: central venous pressure; driving pressure; fluctuation; outcome.