Strong electric field tuning of magnetism in self-biased multiferroic structures

Sci Rep. 2020 Dec 3;10(1):21148. doi: 10.1038/s41598-020-78104-9.

Abstract

A new type of multiferroic heterostructure has been proposed in this work with strong electric field tuning of magnetism. It is composed of a self-biased magnetic layered structure with perpendicular magnetic anisotropy (PMA) and one piezoelectric substrate. Two configurations were investigated by a modeling approach, Ni/Ni/Ni/PMN-PT with Cu as spacer and Terfenol-D/CoFeB/Ni/PMN-PT. Magnetic multilayers at their resonance exhibit multiple absorption peaks from acoustic and optical modes of spin interaction between adjacent magnetic layers. A piezoelectric substrate transfers electric field induced strain to adjacent magnetic layer and thus shifts resonance frequencies of the multiferroic structure by tuning magnetic effective fields through magnetoelastic coupling. It has been demonstrated computationally that the resonance frequencies for the simulated structures could be up to 76 GHz under zero magnetic bias field. A larger tunability (> 100%) is achieved with applied electric field to the PMN-PT [011] substrate. Resonance mode selectivity is present in the configuration Terfenol-D/CoFeB/Ni/PMN-PT wherein one desired mode exhibits a much higher tunability compared to other modes. This enables the total mode number to be tuned by merging or diverging different modes under E-field.