Analysis of the occurrence and molecular characteristics of drug-resistant strains of Enterococcus faecalis isolated from the gastrointestinal tract of insectivorous bat species in Poland: A possible essential impact on the spread of drug resistance?

Environ Pollut. 2021 Jan 15:269:116099. doi: 10.1016/j.envpol.2020.116099. Epub 2020 Nov 23.

Abstract

Bats are poorly understood as a reservoir of multidrug-resistant strains; therefore, the aim of this study was to determine molecular characterization of multidrug-resistant Enterococcus strains isolated from bat species from Poland. A multi-stage analysis based on targeted isolation of drug-resistant strains (selective media with tetracycline, chloramphenicol, gentamicin, streptomycin, and vancomycin), determination of the phenotypic profile of drug-susceptibility using the disc diffusion method, and amplification of DNA fragments surrounding rare restriction sites (ADSRRS-fingerprinting) was used for the isolation and differentiation of strains. The applied strategy finally allowed identification of E. faecalis resistant to at least one antimicrobial in 47.2% of the single-animal group and in 46.9% of the pooled samples of bat's guano. Out of the 36 distinct isolates, 69% met the criteria of multi-drug resistance, with a dominant combination of resistance to tetracycline, erythromycin, and rifampicin. Simultaneously, 41.6% of the strains were high-level aminoglycoside resistant (HLAR). In most strains, phenotypic resistance was reflected in the presence of at least one gene encoding resistance to a given drug. Moreover, our research results show that some genes were detected simultaneously in the same strain statistically significantly more frequently. This may confirm that the spread of some genes (tetM and ermB or aph (3')-IIIa as well as gelE and aac (6')-Ie-aph (2″)-Ia or ant (6)-Ia) is associated with their common occurrence on the same mobile genetic element. To our knowledge, this is the first analysis of multidrug-resistance among E. faecalis isolated from bats. Our research demonstrates that the One Health concept is not associated exclusively with food-producing animals and humans, but other species of wildlife animals should be covered by monitoring programs as well. We confirmed for the first time that bats are an important reservoir of multi-resistant E. faecalis strains and could have a great impact on environmental resistance.

Keywords: ADSRRS- Fingerprinting; Bats; Enterococcus faecalis; Multidrug resistance; Virulence genes.

MeSH terms

  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Chiroptera*
  • Drug Resistance
  • Drug Resistance, Bacterial
  • Enterococcus faecalis / genetics
  • Gastrointestinal Tract
  • Humans
  • Microbial Sensitivity Tests
  • Pharmaceutical Preparations*
  • Poland

Substances

  • Anti-Bacterial Agents
  • Pharmaceutical Preparations