Phosphonium-Based One-Dimensional Perovskite with Switchable Dielectric Behaviors and Phase Transitions

Inorg Chem. 2020 Dec 21;59(24):18396-18401. doi: 10.1021/acs.inorgchem.0c03008. Epub 2020 Dec 3.

Abstract

The one-dimensional (1D) ABX3-type perovskite [(CH3)3PCH2F]CdCl2Br (1) has been obtained on the basis of the design of an organic-inorganic hybrid. Strikingly, it experiences sequential phase transitions at around 295 and 336 K, respectively. Given the noticeable steplike dielectric anomalies in the vicinity of 295 K, 1 is identified as a promising dielectric-switchable material. According to the single-crystal structure analysis, the order-to-disorder transformation of the [(CH3)3PCH2F]+ cation is the main reason for the phase transitions and the change of space group from the orthorhombic Pnma (No. 62) to the hexagonal P63/m (No. 176). This design of a perovskite structure will inspire more advances in the ever-growing field of switchable functional materials.