Neurotensin pathway in digestive cancers and clinical applications: an overview

Cell Death Dis. 2020 Dec 2;11(12):1027. doi: 10.1038/s41419-020-03245-8.

Abstract

Initially, NEUROTENSIN (NTS) has been shown to play physiological and biological functions as a neuro-transmitter/modulator in the central nervous system and as an endocrine factor in the periphery, through its binding to two kinds of receptors: NTSR1 and 2 (G protein-coupled receptors) and NTSR3/sortilin (a vacuolar protein-sorting 10-domain receptor). NTS also plays oncogenic roles in many types of cancer, including digestive cancers. In tumor tissues, NTS and NTSR1 expression is higher than in healthy ones and is associated with poor prognosis. NTS and NTRS1 promote cancer progression and play key functions in metastatic processes; they modulate several signaling pathways and they contribute to changes in the tumor microenvironment. Conversely, NTRS2 involvement in digestive cancers is poorly understood. Discovered for mediating NTS biological effects, sortilin recently emerged as a promising target as its expression was found to be increased in various types of cancers. Because it can be secreted, a soluble form of sortilin (sSortilin) appears as a new serum biomarker which, on the basis of recent studies, promises to be useful in both the diagnosis and tumor progression monitoring. More precisely, it appears that soluble sortilin can be associated with other receptors like TRKB. These associations occur in exosomes and trigger the aggressiveness of cancers like glioblastoma, leading to the concept of a possible composite theranostic biomarker. This review summarizes the oncogenic roles of the NTS signaling pathways in digestive cancers and discusses their emergence as promising early diagnostic and/or prognostic biomarkers and therapeutic targets.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Gastrointestinal Neoplasms / genetics
  • Gastrointestinal Neoplasms / metabolism*
  • Gastrointestinal Neoplasms / pathology
  • Humans
  • Models, Biological
  • Neurotensin / metabolism*
  • Oncogenes
  • Receptors, Neurotensin / metabolism
  • Signal Transduction*

Substances

  • Receptors, Neurotensin
  • Neurotensin