Identifying the Occurrence Time of the Deadly Mexico M8.2 Earthquake on 7 September 2017

Entropy (Basel). 2019 Mar 20;21(3):301. doi: 10.3390/e21030301.

Abstract

It has been shown that some dynamic features hidden in the time series of complex systems can be unveiled if we analyze them in a time domain termed natural time. In this analysis, we can identify when a system approaches a critical point (dynamic phase transition). Here, based on natural time analysis, which enables the introduction of an order parameter for seismicity, we discuss a procedure through which we could achieve the identification of the occurrence time of the M8.2 earthquake that occurred on 7 September 2017 in Mexico in Chiapas region, which is the largest magnitude event recorded in Mexico in more than a century. In particular, we first investigated the order parameter fluctuations of seismicity in the entire Mexico and found that, during an almost 30-year period, i.e., from 1 January 1988 until the M8.2 earthquake occurrence, they were minimized around 27 July 2017. From this date, we started computing the variance of seismicity in Chiapas region and found that it approached the critical value 0.070 on 6 September 2017, almost one day before this M8.2 earthquake occurrence.

Keywords: critical point; entropy; entropy change under time reversal; natural time analysis; order parameter of seismicity.