Entropy in Cell Biology: Information Thermodynamics of a Binary Code and Szilard Engine Chain Model of Signal Transduction

Entropy (Basel). 2018 Aug 19;20(8):617. doi: 10.3390/e20080617.

Abstract

A model of signal transduction from the perspective of informational thermodynamics has been reported in recent studies, and several important achievements have been obtained. The first achievement is that signal transduction can be modelled as a binary code system, in which two forms of signalling molecules are utilised in individual steps. The second is that the average entropy production rate is consistent during the signal transduction cascade when the signal event number is maximised in the model. The third is that a Szilard engine can be a single-step model in the signal transduction. This article reviews these achievements and further introduces a new chain of Szilard engines as a biological reaction cascade (BRC) model. In conclusion, the presented model provides a way of computing the channel capacity of a BRC.

Keywords: Szilard engine chain; average entropy production rate; binary code system; biological reaction cascade; fluctuation theorem; mutual entropy.

Publication types

  • Review