Information Geometry of Randomized Quantum State Tomography

Entropy (Basel). 2018 Aug 16;20(8):609. doi: 10.3390/e20080609.

Abstract

Suppose that a d-dimensional Hilbert space H ≃ C d admits a full set of mutually unbiased bases | 1 ( a ) 〉 , ⋯ , | d ( a ) 〉 , where a = 1 , ⋯ , d + 1 . A randomized quantum state tomography is a scheme for estimating an unknown quantum state on H through iterative applications of measurements M ( a ) = | 1 ( a ) 〉 〈 1 ( a ) | , ⋯ , | d ( a ) 〉 〈 d ( a ) | for a = 1 , ⋯ , d + 1 , where the numbers of applications of these measurements are random variables. We show that the space of the resulting probability distributions enjoys a mutually orthogonal dualistic foliation structure, which provides us with a simple geometrical insight into the maximum likelihood method for the quantum state tomography.

Keywords: dualistic foliation; information geometry; mixed coordinate system; mutually unbiased bases; quantum state tomography.