Cross Mean Annual Runoff Pseudo-Elasticity of Entropy for Quaternary Catchments of the Upper Vaal Catchment in South Africa

Entropy (Basel). 2018 Apr 13;20(4):281. doi: 10.3390/e20040281.

Abstract

This study focuses preliminarily on the intra-tertiary catchment (TC) assessment of cross MAR pseudo-elasticity of entropy, which determines the impact of changes in MAR for a quaternary catchment (QC) on the entropy of another (other) QC(s). The TCs of the Upper Vaal catchment were used preliminarily for this assessment and surface water resources (WR) of South Africa of 1990 (WR90), of 2005 (WR2005) and of 2012 (WR2012) data sets were used. The TCs are grouped into three secondary catchments, i.e., downstream of Vaal Dam, upstrream of Vaal dam and Wilge. It is revealed that, there are linkages in terms of mean annual runoff (MAR) between QCs; which could be complements (negative cross elasticity) or substitutes (positive cross elasticity). It is shown that cross MAR pseudo-elasticity can be translated into correlation strength between QC pairs; i.e., high cross elasticity (low catchment resilience) and low cross elasticity (high catchment resilience). Implicitly, catchment resilience is shown to be associated with the risk of vulnerability (or sustainability level) of water resources, in terms of MAR, which is generally low (or high). Besides, for each TC, the dominance (of complements or substitutes) and the global highest cross MAR elasticity are determined. The overall average cross MAR elasticity of QCs for each TC was shown to be in the zone of tolerable entropy, hence the zone of functioning resilience. This could assure that water resources remained fairly sustainable in TCs that form the secondary catchments of the Upper Vaal. Cross MAR pseudo-elasticity concept could be further extended to an intra-secondary catchment assessment.

Keywords: complement; cross elasticity; entropy; mean annual runoff; quaternary catchment; resilience; substitute; water resources.