Photonic Switching Porous Organic Polymers toward Reversible Control of Heterogeneous Photocatalysis

ACS Appl Mater Interfaces. 2020 Dec 16;12(50):56491-56498. doi: 10.1021/acsami.0c18062. Epub 2020 Dec 2.

Abstract

Sonogashira-Hagihara coupling reaction of photoswitchable dithienylethene (AEDTE) with metal-free 5,10,15,20-tetrakis(4-iodophenyl)porphyrin and its metal derivatives (MTIPP, M = H2, Zn(II), Fe(II)) results in three porous organic polymers (POPs) including AEDTE-H2TIPP-POP, AEDTE-ZnTIPP-POP, and AEDTE-FeTIPP-POP. The morphology, components, and structures of newly obtained POPs have been examined by a range of spectroscopic and microscopic techniques including infrared spectroscopy (IR), solid-state UV-vis diffuse reflectance spectroscopy, thermogravimetric analysis (TGA), powder X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The porous structures have been estimated by nitrogen and carbon dioxide sorption isotherms at 77 and 196 K, respectively. The open-AEDTE-H2TIPP-POP with AEDTE in an open form was revealed to be an effective and stable heterogeneous photocatalyst for visible light-driven oxidation of N-methylpyridinium salts possibly because of its relatively large specific surface area. In particular, a proof-of-concept of photoswitchable POP photocatalysts has been established using different light irradiation upon open-AEDTE-H2TIPP-POP to control its heterogeneous photocatalytic behaviors because of the adjustment over the electron transfer process and porous structures through photoisomerization of AEDTE. The present result highlights the bright perspective of photoswitching POPs in the field of materials chemistry and catalysis community.

Keywords: diarylethene; photocatalysis; photoswitchable; porous organic polymers; porphyrin.