Nano-CT scans in the optimisation of purposeful experimental procedures: A study on metallic fibre networks

Med Eng Phys. 2020 Dec:86:109-121. doi: 10.1016/j.medengphy.2020.10.015. Epub 2020 Oct 31.

Abstract

Motive Metallic fibre networks and their mechanical behaviour are only insufficiently understood. In this particular field of research, the use of nano-CT scans offers advanced opportunities for the optimised planning of experimental work and component design. Several novel applications will benefit from this research; in particular, tissue engineering applications where a controlled and reproducible mechanical stimulus on cells is required can make use of these components. MethodFor the present study, the geometry of metallic fibre network samples is measured and digitalised through the use of nano-CT scan protocols and adequate radiological post-processing steps. Fibre medial axes are transferred into finite element assemblies and are exposed to magnetic actuation models. Network displacement of input geometries is quantified by averaging of node displacement fields. Key resultsComplex 3D deformation fields with regions of tension, shear, and compression are obtained. Results from a previous study about matrix material deformation can be confirmed in this study for greater sample geometries. The strain magnitude is not uniform across the samples; several influencing parameters and deformation patterns are identified. A simple analytical model can be presented which quantifies the material deformation. ConclusionsNano-CT scans provide an efficient radiological tool in the planning of relevant experimental procedures. The present study confirms the general usability of fibre networks for the contactless creation of 3D strain fields in tissue engineering. Mechanical effects in tissue growth stimulation known from experimental work are obtained numerically for the investigated assemblies. Further work about the mechanical effects in tissue cultures appears highly worthwhile.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Finite Element Analysis
  • Pressure
  • Stress, Mechanical
  • Tissue Engineering*