Near-Field Measurement of Six Degrees of Freedom Mining-Induced Tremors in Lower Silesian Copper Basin

Sensors (Basel). 2020 Nov 28;20(23):6801. doi: 10.3390/s20236801.

Abstract

The impact of seismicity on structures is one of the key problems of civil engineering. According to recent knowledge, the reliable analysis should be based on both rotational and translational components of the seismic wave. To determine the six degrees of freedom (6-DoF) characteristic of mining-induced seismicity, two sets of seismic posts were installed in the Lower Silesian Copper Basin, Poland. Long-term continuous 6-DoF measurements were conducted with the use of the R-1 rotational seismometer and EP-300 translational seismometer. In result data collection, the waveforms generated by 39 high-energy seismic events were recorded. The characteristic of the rotational component of the seismic waves were described in terms of their amplitude and frequency characteristics and were compared with translational measurements. The analysis indicated that the characteristic of the rotational component of the seismic wave differs significantly in comparison to translational ones, both in terms of their amplitude and frequency distribution. Also, attenuation of rotational and translational components was qualitatively compared. Finally, the empirical formulas for seismic rotation prediction in the Lower Silesian Copper Basin were developed and validated.

Keywords: mining-induced seismicity; prediction of rotational velocity; rotational seismology.