Electron-phonon coupling in APd3O4: A = Ca, Sr, and Sr0.85Li0.15

J Phys Condens Matter. 2021 Mar 10;33(10):105601. doi: 10.1088/1361-648X/abcf60.

Abstract

Here we have investigated the role of electron phonon coupling on the Raman spectrum of narrow bandgap semiconductors APd3O4 (A = Ca, Sr) and hole-doped system Sr0.85Li0.15Pd3O4. Four Raman active phonons are observed at room temperature for all three compounds as predicted by factor group analysis. The lowest energy phonon (∼190/202 cm-1) associated with Pd vibrations is observed to exhibit an asymmetric Fano-like lineshape in all the three compounds, indicating the presence of an interaction between the phonon and the electronic continuum. The origin of the electronic continuum states and electron-phonon coupling are discussed based on our laser power- and temperature-dependent Raman results. We have observed an enhanced strength of electron-phonon coupling in Sr0.85Li0.15Pd3O4 at low temperatures which can be attributed to the metallicity in this doped compound.