Efficient tandem organic light-emitting diodes with non-doped structures

Opt Lett. 2020 Dec 1;45(23):6450-6453. doi: 10.1364/OL.409613.

Abstract

Highly efficient tandem organic light-emitting diodes (TOLEDs) were achieved based on a non-doped charge generation unit (CGU) consisting of LiF/Al/C60/4,4',4"-tris(N-3-methylphenyl-N-phenyl-amino) triphenylamine (m-MTDATA) and ultrathin emitting layers. The current-voltage characteristics of the CGU devices and electron-only devices and the capacitance-voltage characteristics of the CGU-based capacitance devices were characterized to explore the charge generation and injection mechanisms. The charge generation process occurs at the interface of C60/m-MTDATA through electron transferring from the highest occupied molecular orbital of m-MTDATA to the lowest unoccupied molecular orbital of C60. It is found that the thinner C60 layer contributes to efficient electron injection. Under the optimal structure, the blue TOLEDs exhibit a maximum current efficiency (CEmax) of 43.3 cd/A. The CEmax and maximum external quantum efficiency (EQEmax) of the white TOLEDs reach 84.6 cd/A and 26.7%, respectively.