Co2+ Substituted Spinel MgCuZn Ferrimagnetic Oxide: A Highly Versatile Electromagnetic Material via a Facile Molten Salt Route

Nanomaterials (Basel). 2020 Nov 25;10(12):2333. doi: 10.3390/nano10122333.

Abstract

We report on the electromagnetic properties of Co2+ substituted spinel MgCuZn ferrites developed via a facile molten salt synthesis (MSS) route. The choice of synthesis route in combination with cobalt substitution led to strong electromagnetic properties such as high saturation magnetization (i.e., 63 emu/g), high coercivity (17.86 gauss), and high initial permeability (2730), which are beneficial for the multilayer chip inductor (MLCI) application. In a typical process, the planned ferrites were synthesized at 800 °C using sodium chloride as a growth inhibitor, with dense morphology and irregularity in the monolithicity of the grains. The compositional analysis of as-prepared ferrite confirms the presence of desired elements with their proportion. The crystallite size (using X-ray diffraction (XRD) analysis) for different samples varies in the range of 49-51 nm. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis showcases the compact morphology of the developed samples, which is typical in the ferrite system. The dielectric properties (dielectric-loss and dielectric-constant) in the frequency range of 100Hz-1MHz suggest normal dielectric distribution according to interfacial polarization from Maxwell-Wagner. From the developed ferrites, upon comparison with a low dielectric loss with high permeability value, Mg-Cu-Zn ferrite with Co = 0.05 substitution proved to be a stronger material for MLCIs with high-performance applications.

Keywords: MgCoCuZn ferrites; electric properties; initial permeability; magnetic properties; molten salt route.