Structural and functional properties of astrocytes on PCL based electrospun fibres

Mater Sci Eng C Mater Biol Appl. 2021 Jan:118:111363. doi: 10.1016/j.msec.2020.111363. Epub 2020 Aug 11.

Abstract

Increasing evidences are demonstrating that structural and functional properties of non-neuronal brain cells, called astrocytes, such as those of cytoskeleton and of ion channels, are critical for brain physiology. Also, changes in astrocytes structure and function concur to and might determine the outcome of neuronal damage in acute neurological conditions or of chronic disease. Thus, the design and engineering of biomaterials that can drive the structural and functional properties of astrocytes is of growing interest for neuroregenerative medicine. Poly-ɛ-caprolactone (PCL), is FDA-approved polyester having excellent mechanical and chemical properties that can be tailored to obtain neural implants for regenerative purposes. However, the study on the use of PCL substrates for neuroregenerative purposes are mainly aimed at investigating the interaction of the material with neurons. Here, we report on the long-term viability, morphology, structural and functional properties of primary astrocytes grown on electrospun fibres of PCL (-GEL) and on blending of PCL and Gelatin protein (+GEL). We found that topography and morphological features of the substrate are the properties that mainly drives astrocytes adhesion and survival, over the long term, while they do not alter the cell function. Specifically, aligned PCL fibres induced in astrocytes a dramatic actin-cytoskeletal rearrangement as well as focal adhesion point number and distribution. Interestingly, structural changes observed in elongated astrocytes are not correlated with alterations in their electrophysiological properties. Our results indicated that PCL electrospun fibres are a permissive substrate that can be tuned to selectively alters astrocytes structural components while preserving astrocytes function. The results open the view for the use of PCL based electrospun fibres to target astrocytes for the treatment of brain dysfunction such as injuries or chronical disease.

Keywords: Astrocytes; Cell function; Electrospun nanofiber; Instructive material; Poly-ɛ-caprolactone.

MeSH terms

  • Astrocytes
  • Gelatin
  • Nanofibers*
  • Polyesters
  • Tissue Engineering
  • Tissue Scaffolds

Substances

  • Polyesters
  • Gelatin